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Russia
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Abstract. For eigenvaluesz(8) of the Hamiltonian of the quartic anharmonic oscillator we
give a representation which reproduces two well known limiting cases from the theory of the
anharmonic oscillator expansions: the weak-coupling asymptotic perturbation and the convergent
strong coupling. We give an estimation of the radius of convergence of the strong-coupling
expansion for the ground-state eigenvalue.

1. Introduction

The model systems which are exactly unsolvable but at the same time tractable in the sense
that their properties can be studied more or less detailed, always play a special role in
guantum mechanics and quantum field theory. On the one hand, by studying such model
systems one obtains deeper insight into the properties of more complex systems. On the
other hand, such systems play an important role in the development of different numerical
computational schemes.

A well known example of the one-dimensional exactly unsolvable quantum mechanical
system is provided by the anharmonic oscillator with the Hamiltonian

P2 x2 x4

H="%+5 +55 @)

This system has been studied by many authors. The existing literature on the anharmonic
oscillators is extremely vast, we shall mention only a few works. A review of the work on
this subject before 1980 can be found in the paper by Killingbeck (1977).

The properties of the eigenvalues of the Hamiltonian (1) as functions of the
anharmonicity constang were studied in details in the works by Simon (1970) and
Bender and Wu (1969, 1973). It was shown by Simon (1970) that if one considers the
operatorx?/2 in equation (1) as a perturbing operator and applies formally the Rayleigh—
Schiddinger perturbation theory, then the resulting perturbation expansion

E(B) ~ ) Eqp" )
n=0

is an asymptotic one and can be used in every séei@(B)| < 6 < 3w/2. A convergent
expansion for an eigenvalug(g) can be obtained if one considers the opposite case of the
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large g-values. It is known (Simon 1970), that(8) can be represented as the following
converging series in powers gf 3 (the so-called strong-coupling expansion)
o0
EB)=p) cuf 3. &)
m=0
In view of the radius of convergence of this expansion, it was shown (Simon 1970) that it
is a finite number, i.e. the series (3) cannot converge fog all
The studies of the system described by the Hamiltonian (1) contributed considerably to
the development of different numerical schemes, especially the techniques of the summation
of the divergent series (Arteaat al 1990), such as Pédapproximants technique (Simon
1970, 1982,Cizek and Vrscay 1982), or Borel summation procedure (Hirsbrunner and
Loeffel 1975). On the basis of the strong-coupling expansion (3) different efficient
computational schemes, such as the so-called renormalized strong-coupling expansion
(Vinette andCizek 1991, Janke and Kleinert 1995, Weniger 1996a) have been constructed.
The weak-coupling asymptotic perturbation expansion (2) is well studied. The
recurrence relation proposed in the paper by Bender and Wu (1973) allows us to compute
easily the coefficient€, up to quite a high order. In this work the law of the asymptotic
largen behaviour of the coefficient®, was found, which in case of the ground-state
eigenvalue reads

6
By~ (=)' =T+ %)(%)”(l —~ % —~ % = g . ) @)

whenn — +o0. For the first two coefficients; on the right-hand side of the equation (4)
one has (Bender and Wu 1973); = ‘7’—2, ap; = 2009910 368.

In view of the strong-coupling expansion (3), the coefficienthave been calculated
in a number of works (Fernandez 1992, Fernandez and Guardiola 1993, Janke and Kleinert
1995, Weniger 1996b). Numerical calculations (Janke and Kleinert 1995, Weniger 1996b)
indicate that the series (3) converges foas small as @.

The fact that the two expansions (2) and (3) are somehow connected has been known
for a long time. It is known (Artecat al 1990) that by means of a suitable normalization
process the coefficients of the strong-coupling expansion can be computed provided that the
weak-coupling coefficients are known. Examples of such procedures are presented in the
papers by Janke and Kleinert (1995) and Weniger (1996b). In the latter p&pand x®
anharmonicities have also been considered.

In this paper we obtain a representation fog) from which both strong-coupling and
weak-coupling expansions can be obtained as two limiting cases. Our consideration will
rely on the observation that the regions of applicability of the expansions (2) and (3) overlap,
i.e. one can choosg so thatE(8) can be computed both by means of the weak-coupling
asymptotic expansion (2) and the convergent strong-coupling expansion (3).

2. Theory

2.1. A representation foE (8)

The functionE (B8) is known to be a regular analytic function gfin the complexg-plane
with a cut drawn along the negative real axis (Simon 1970, Bender and Wu 1813).
has two singular points = 0 and8 = oco. Consider the functiorG(8) = %. From
the known analytic properties af (g) if follows that G(B8) is an analytic function ofg
in the complexg-plane cut along the negative real axis, regular everywhere excep0d
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and 8 = oco. From equation (3) one can see th@tg) tend uniformly to zero when
ReB — +o0. It is known (Markushevitch 1968) that these conditions are sufficient to
guarantee that for R@ > 0 the functionG(8) can be represented as a Laplace transform
of a certain functionf (¢) and, hence for Rg > 0 one can write

E(B) =/3/0 fe? dr. (5)

The analogous representation has been considered in different context by Dekthalere
(1997).

The function f(¢t) can be expressed through the coefficients of the strong-coupling
expansion (3) as follows. Inverting the Laplace transform on the right-hand side of the
equation (5) one obtains fof(¢)

1 c+ioco E(,B) e/f}z

fo=5s | e ©)

The integral in equation (6) can be taken along any straight lin@ Re > 0. The strong-
coupling expansion converges for sufficiently latge-values. Therefore, by choosing the
parameter ¢’ to be a sufficiently large positive number, one can choose the contour of
integration in formula (6) so that the strong-coupling series converges everywhere on the
contour. Substituting expansion (3) far(8) under the integral sign in equation (6) and
performing term-by-term integration with the help of the known formula (Abramovitz and
Stegun 1964)

T  2xi

where the contour of integratiofi is a straight line Re = constant> 0, one obtains for
the function £ (¢)

! ! /Cx_ze" dx @)

= Cm 2n—1
1) = t 3. 8
£ H;JF@’";Z) (8)

The coefficients:,, in equation (8) are the coefficients of the strong-coupling expansion
(3). Itis easy to see that series (8) converges far. dihdeed, the strong-coupling expansion
has a non-zero radius of convergence. In equation (8) by making a substitution one
has, according to the Hadamard formula

limsup|e, | = 1 (®)]

n—oo R

1
n

whereR is the radius of convergence of the sefes:,u". Applying the Hadamard formula
to the seriesy cnu”/F(z’"T*Z) and using asymptotic expression for the gamma function,
one can see that this series converges for all

The next question is how to obtain the asymptotic expansion (2) from the integral
representation (5). At this stage we have to make an assumption about the fuf@tion
from equation (8). A rather convincing numerical proof that this assumption is valid will
be given below. Let us suppose that the functjom) can be represented as

f(@)=Eo+g() (10)

wherekEj is the zero-order coefficient of the perturbation expansion (2) and the fungtipn
decays sufficiently rapidly when — oo so that all the integralgfooo g)t™dt form > 0

exist. If assumption (10) is valid then, expanding exponential function under the integral
sign in the equation (5) and integrating the series obtained term-by-term one obtains for
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Table 1. The function f () and its asymptotic approximation&® (r).

tf) AI0) AI0) 0]

1 057856930 0.65230909 0.40618022 0.11401206

5 050930658 0.52023515 0.50561142 0.49784817
10 0.50219031 0.50445901 0.50218037 0.50132502
15 0.50073565 0.50139703 0.50081413 0.50063547
20 0.50029371 0.50052515 0.50033539 0.50028502
25 0.50013055 0.50022178 0.50015010 0.50013309
30 0.50006255 0.50010174 0.50007172 0.50006522
32 0.50004740 0.50007587 0.50005420 0.50004965
34 0.50003624 0.50005710 0.50004127 0.50003805
36 050002797 0.50004332 0.50003166 0.50002935
38 0.50002185 0.50003312 0.50002444 0.50002277
39 050001945 0.50002904 0.50002152 0.50002010
40 0.50001742 0.50002550 0.50001899 0.50001776

E(B) the series analogous to (2), where the coefficightswith n > 0 are given by the
following formula

_1\yn—1 0
E, = %/0 g L. (11)

It is easy to see that the above described procedure (expansion of the exponential function
under the integral sign and further term-by-term integration), yields an asymptotic series,
i.e. if Ey(B) is the Nth partial sum of the series, théBA(8) — Ex(B)| = O(B|N*Y)
when 8 — 0 remaining in the half-plane R > 0. We shall not dwell upon the proof

of this fact since it is elementary (it involves only an estimation of the upper bound for
|f0°°(e*ﬁ’ —e;‘”)g(t) dz|, where the function ,@5' is a sum of the firstv terms of the Taylor

series of e#').

In the second column of table 1 we represent the numerical values of the furfctipn
computed for different-values with the help of series (8). The computations have been
performed with the help of ‘Mathematica’. For the coefficientswe used the data from
Janke and Kleinert (1995) where the first 22 coefficients of the strong-coupling expansion
for the ground-state energy of the quartic anharmonic oscillator are given. Since the
normalization of the coupling constant used in this paper is different from that used by Janke
and Kleinert (1995) (these authors write the anharmonicity term in the Hamiltonian (1) as
gx*/4 instead of ourgx*/2, and calculate the coefficients of the strong-coupling expansion
in powers Ofg_g), the coefficients:, from equation (3) are actually the coefficients of
the strong-coupling expansion given by Janke and Kleinert (1995) multiplied by a factor of
2”5 . For the sake of completeness we present in the second column of table 2 the first 22
coefficients of series (3). To save space only a few digits of the coefficigmi® presented
in the table.

Due to the rapid convergence of the series, we were able to calculate the fuyi¢tion
up to rather large values of An inspection of the summation process when calculating
the sum in equation (8) shows that account of the first 22 terms of series (8) allows us to
reach an accuracy of about 1 part in*Jven fort as large as 40. For smaller values of
¢t the accuracy is much higher. Thus, we estimate, that for25 account of the first 22
terms of series (8) yields an accuracy of one part i, #0d forr ~ 15 to one part in 10

The data from the second column of table 1 show that our hypothesis (10) is very likely
to be true. Having established this fact we may proceed further and obtain some additional
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Table 2. Coefficientsc, and sequence, /"

|1/n

n Cn lcn

0 0.5301810452

1 0.1810113244 0.181011
2 —0.0172551314 0.131359
3 0.0025976514 0.137 465
4 —0.0004154172 0.142 765
5  0.000 0645560 0.145 207
6 —9.244732x 10°%  0.144871
7 1131832x10°°  0.141430
8 —9.438601x 108  0.132393

—3.261936x 10°°  0.114039
10 3887755x 10°  0.144202
11 —1.144361x 10°  0.153866
12 2449702x 1010  0.158159
13 —4.204230x 1011 0.159156
14 5509166x 1012 0.156961
15 —3.623969x 10713  0.148120
16 —7.610623x 104 0.151387
17 3931341x 107 0.162721
18 —1.068970x 10714  0.167429
19 2217113x10°1® 0.169327
20 —3.640361x 10716 0.169066
21 4200939x 10°Y  0.166020
22 —6.481760x 10°1° 0.149025

©

information about the functiog(z). To do that we shall study the asymptotic behaviour
of the perturbation coefficientg, following from equation (11) and compare it with the
asymptotic formula (4) by Bender and Wu. One can see from equation (11) that when
n — oo it is the region of the large-values which contributes to the integral. We therefore
need a guess about the largasymptotic behaviour of the functiof(r). Let us suppose

that for larger-values the functiory(¢) behaves as

g(t) ~ Ar® exp(—bt?) (12)
where A, «, b, y are some constants to be determined. Substituting this expression into
equation (11) and performing the integration one obtains:fes +oco

n— atn

(=D 1é (5
n=Dly p%
Using the known properties of gamma functions (Abramovitz and Stegun 1964) one can
easily show that this expression coincides with the leading term of the true asymptotic

behaviour of the coefficient®, for the ground-state energy of the quartic anharmonic
oscillator, given by equation (4) if, and only if, the parameters in equation (12) are chosen

E,

(13)

asa =0,y = % b= \/g, A = +/6/7. To reproduce the next-to-leading-order terms of
the asymptotic formula (4), one should suppose that when +oo the corrections to the
large+ asymptotic behaviour (12) of the functigrz) are of the form

V6 e1 e e3
1)~ —exp(—/8/3h(1— — - — — — ... 14
e~ Lep- aH(1- %2 (14)
with the coefficients; to be determined. Substituting expression (14) into equation (11),
integrating and comparing the result with the asymptotic formula (4) one can find the values
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of the coefficients; on the right-hand side of equation (14). For the first two coefficients
e; one obtains; = al\/g, ez = (6az — 3a;)/4, wherea,, ap are the coefficients on the
right-hand side of the formula (4) by Bender and Wu. Thus, to reproduce the correctlarge-

asymptotic behaviour of the coefficienks, for the ground-state energy, the functigtiz)
given by equation (8) must have the following largasymptotic behaviour

3
NERPr
- ) (15)

ay
1_
NG
1

whereEq = 3, a1 = 3—2 anda, = 2009910368. We emphasize that this expression has
no fitting parameters. Once the functional form (12), (14) of the asymptotic behaviour of
the functiong(z) is adopted, all the parameters on the right-hand side of formula (15) are
determined uniquely. Formula (15) can easily be verified. In the third column of table 1 we
present numerical values given by the asymptotic formula (15) provided that only the two
leading terms of expansion (15) are taken into account (i.e. the terms of ordeasid !

in the parentheses on the right-hand side of equation (15) are omitted, this approximation is
designated ag @ (¢) in table 1). The fourth column of table 1 contains the results obtained

if three leading terms of expansion (15) are taken into account (i.e. the term ofrorder

is kept in the parentheses on the right-hand side of equation (15), this approximation is
designated as®(r) in the table), and the fifth column of table 1 contains the results
obtained with account of the four leading terms of equation (15) (the terms of arders

+~* are kept in the parentheses on the right-hand side of equation (15), design#tédras

in table 1). We recall that the second column of this table contains the numerical values of
the function f (¢) calculated according to equation (8).

The comparison of the data strongly supports the conclusion that formula (15) describes
correctly the large- asymptotic behaviour of the functiofi(z) given by equation (8) and
that representation (5) with the functigf(¢) given by equation (8) is valid. Both strong-
coupling and weak-coupling expansions can be obtained from equation (5) as two limiting
cases.

Let us discuss formula (15) in more detail. The left-hand side of it is series (8) with
the coefficients directly related to the coefficients of the strong-coupling expansion (3).
The right-hand side is known in analytical form. There may exist a way of obtaining an
analytical information about the asymptotic largésehaviour of the coefficients, from
this expression. We did not find a direct way to do it. Instead, we performed a numerical
study of series (8) which allowed us to obtain some information abpindirectly. This
study is reported below.

oo

Z m__ 2 B+ ? exp(—/81/3) (

2m+2
m:OF( fj )

2.2. Numerical study of the coefficienis

We shall need a few facts from the theory of entire functions. First, we recall the
definitions of such concepts as order and type of an entire function of finite order and
type (Markushevitch 1968). For a given entire functioia) a functionM (r) is introduced
as

M(@r) = m@qh(un. (16)
According to well known properties of analytic functions(r) is a monotonous growing
function of . Omitting some unnecessary details, ordeand typeo of an entire function
h(u) can be defined as the smallest possible non-negative numbers for wiich <
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exp(or?) for all sufficiently larger. Roughly speaking, these numbers determine how
rapidly the maximum of the absolute value /ofit) grows. One can show (Markushevitch
1968) that ordep of an entire function represented by a sefeéd,u”, can be expressed
through the coefficients, of its power series expansion as

ninn

= —limsup——. 17
o m sup;- b (17)

Let us consider the series obtained from series (8) by making a substitéfoa u

C
h(u) = — " (18)
2 )

As we saw when discussing the convergence properties of serieg((8),is an entire
function of u. It can be seen that the order of this functiorpis= %’ Indeed, substituting
the coefficients of expansion (18) into equation (17), using the asymptotic expression for
the gamma function and taking into account that according to the Hadamard fdepjtta
has a finite limit, one can see that for the function defined by series ,()18:),%. If we
knew the types of this function the radius of convergence of series (18) could be found as
follows.

We shall need one more result from the theory of entire functions (Markushevitch 1968),
stating that ifp,, are the coefficients of a power series expansion of an entire function having
finite-orderp and types, then the following equality holds

lim supn®?|b,|Y" = (epo)Y/’. (19)

n—00
Applying this formula for the entire function (18), taking into account the Hadamard formula
(9) and using asymptotic expression for the gamma function (Abramovitz and Stegun 1964),
one obtains
lim suplc,|» = 1_ o3 (20)
n—o0 R

whereR is the radius of convergence of the serfes,u” ando is the type of the entire
function (18).

To find the value o& for the functionz () given by series (18) we adopted the following
strategy. We computed the sum of series (18) at the points lying on the dintles r;
in the u-complex plane with increasing. We found that for 6< |u| < 12 the maximum
of the absolute value df:(u)|, for u lying on a circle|u| = constant, is always achieved
whenu is on the negative real axis. In the second column of table 3 we present the values
of the M (r;) = maXy—, |h(u)| for r; = 6-12. In the third column of this table we present
the sequence of the raties = In M (r)/r*? which according to the definition of a type of
an entire function, converges ta

We arrive at the following picture. Fa# — 400 along the positive real axis the
behaviour ofz(u) is known analytically and can be obtained from equation (15). On the
negative real axig () grows exponentially as exp u?) with o ~ 0.068.

In the fourth column of table 3 we present the numbers from the preceding column raised
to the power%. According to equation (20) the limit of this sequence is equal/t®, Wwhere
R is the radius of convergence of the serfesc,u”. According to the Hadamard formula
the same quantity can be found as a limit of the sequéng&”. In the third column of
table 2 we present this sequence. These numbers are rather close to those from the fourth
column of table 3 but have somewhat greater dispersion. This is the reason why we used
the procedure based on the study of the functigm) for the estimation of the radius of
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Table 3. M(r;) = max,—,, |h(u)| as a function of; ando;.

i M) of o’

i

6 213442 0.0515886 0.1385806
7 310481 0.0611737 0.1552541
8 441317 0.0656104 0.1626729
8 6.18272 0.0674725 0.1657364
10 856924 0.0679314 0.1664870
11 11.7572 0.0675513 0.1658654
12 159419 0.0666106 0.1643220

Table 4. The function f (r) for the first excited state of the quartic oscillator.

f@

1.697 459
1.586 290
1.547105
1.527804
1.516225
1.508012
1.501 209

~

~NOoO O WN PR

convergence. We found that it gives better numerical results, which we would attribute to
the fact, that the numerical study of the function given by series (18) is less sensitive to
small numerical uncertainties in the numerical values of the large-order coefficjents

From the numbers in the third column of table 3 one can estimate the radius of
convergence of the series (18) &~ %17 = 5.9. This is the radius of convergence
of the series in powers of = 1/8%3. In the f-complex plane we obtain thus an estimation
that the strong-coupling expansion (3) for the ground-state energy of the quartic anharmonic
oscillator converges if8| > 0.07.

3. Remarks

For the ground-state energy(B) of the quartic anharmonic oscillator we have given a
representation reproducing both limiting cases of the theory: the strong-coupling and the
weak-coupling regimes. It was shown, that the asymptotic behaviour of function (8) given
by a power series with the coefficients depending upon the strong-coupling coefficients (3)
can be obtained in a closed analytical form. An interesting question is: can one extract
analytical information about the coefficients from this relation?

The representation analogous to (5) can also be constructed for the excited states of
the quartic anharmonic oscillator. In table 4 we present some results for the first excited
state of the quartic anharmonic oscillator. We used the data for the first five coefficients
of the strong-coupling expansion for the first excited state, given in the work by Fernandez
(1992). In the second column of table 4 we represent the sum of the first five terms of
series (8). One can see, that for the largalues the sum of the series tend%tas could
be expected on the basis of formula (10).

One can give another derivation of the asymptotic formula (15) which reveals the well
known connection between the behaviour of perturbation theory at large orders and barrier-



Link between the strong-couping and the weak-coupling 7003

penetration rate (Le Guillou and Zinn-Justin 1990). Let us deform the contour of integration
in equation (6) so that it starts atoo, goes along the negative real in the lower half-plane,
turns anticlockwise round the origin and goes-too along the negative real axis in the
upper half-plane. If we are interested in the larggsymptotic behaviour of the function

f(p) itis easy to see that it is a region near the origin which contributes mostly to the integral
(6). Consider separately the contributions to the integral (6) due to the real and imaginary
parts of energy. One can see that the contribution of the real part can be calculated just by
replacing ReE(8) by its value forg = 0, i.e. by%. A simple integration yield%. After

simple manipulations, formula (6) can be rewritten as

1 1 (P ImE®B) 4
f(t)_é_;[wTeﬂdﬂ (21)

where we used the fact that(8) assumes complex conjugate values on the upper and lower
sides of the cut. To estimate the latter integral in the limit of large positivae should
know the behaviour of Ink(8) for small negatives-values. It is given by the well known
semiclassical formula

: [ 4 2
Im E*“(B) = —%exp{%}. (22)

Substituting the latter equation into formula (21) and calculating the integral with the help
of the saddle-point method, one recovers the asymptotic formula (15) for the funGtipn
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