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Institute of Spectroscopy, Russian Academy of Sciences, 142092, Troitsk, Moscow Region,
Russia
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Abstract. For eigenvaluesE(β) of the Hamiltonian of the quartic anharmonic oscillator we
give a representation which reproduces two well known limiting cases from the theory of the
anharmonic oscillator expansions: the weak-coupling asymptotic perturbation and the convergent
strong coupling. We give an estimation of the radius of convergence of the strong-coupling
expansion for the ground-state eigenvalue.

1. Introduction

The model systems which are exactly unsolvable but at the same time tractable in the sense
that their properties can be studied more or less detailed, always play a special role in
quantum mechanics and quantum field theory. On the one hand, by studying such model
systems one obtains deeper insight into the properties of more complex systems. On the
other hand, such systems play an important role in the development of different numerical
computational schemes.

A well known example of the one-dimensional exactly unsolvable quantum mechanical
system is provided by the anharmonic oscillator with the Hamiltonian

Ĥ = p̂2

2
+ x

2

2
+ β x

4

2
. (1)

This system has been studied by many authors. The existing literature on the anharmonic
oscillators is extremely vast, we shall mention only a few works. A review of the work on
this subject before 1980 can be found in the paper by Killingbeck (1977).

The properties of the eigenvalues of the Hamiltonian (1) as functions of the
anharmonicity constantβ were studied in details in the works by Simon (1970) and
Bender and Wu (1969, 1973). It was shown by Simon (1970) that if one considers the
operatorβx2/2 in equation (1) as a perturbing operator and applies formally the Rayleigh–
Schr̈odinger perturbation theory, then the resulting perturbation expansion

E(β) ∼
∞∑
n=0

Enβ
n (2)

is an asymptotic one and can be used in every sector| arg(β)| < θ < 3π/2. A convergent
expansion for an eigenvalueE(β) can be obtained if one considers the opposite case of the
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largeβ-values. It is known (Simon 1970), thatE(β) can be represented as the following
converging series in powers ofβ−

2
3 (the so-called strong-coupling expansion)

E(β) = β 1
3

∞∑
m=0

cmβ
− 2m

3 . (3)

In view of the radius of convergence of this expansion, it was shown (Simon 1970) that it
is a finite number, i.e. the series (3) cannot converge for allβ.

The studies of the system described by the Hamiltonian (1) contributed considerably to
the development of different numerical schemes, especially the techniques of the summation
of the divergent series (Artecaet al 1990), such as Padé approximants technique (Simon
1970, 1982,Čižek and Vrscay 1982), or Borel summation procedure (Hirsbrunner and
Loeffel 1975). On the basis of the strong-coupling expansion (3) different efficient
computational schemes, such as the so-called renormalized strong-coupling expansion
(Vinette andČižek 1991, Janke and Kleinert 1995, Weniger 1996a) have been constructed.

The weak-coupling asymptotic perturbation expansion (2) is well studied. The
recurrence relation proposed in the paper by Bender and Wu (1973) allows us to compute
easily the coefficientsEn up to quite a high order. In this work the law of the asymptotic
large-n behaviour of the coefficientsEn was found, which in case of the ground-state
eigenvalue reads

En ∼ (−1)n−1

√
6

π3
0(n+ 1

2)(
3
2)
n

(
1− a1

n
− a2

n2
− a3

n3
. . .

)
(4)

whenn→+∞. For the first two coefficientsai on the right-hand side of the equation (4)
one has (Bender and Wu 1973):a1 = 95

72, a2 = 20 099/10 368.
In view of the strong-coupling expansion (3), the coefficientscn have been calculated

in a number of works (Fernandez 1992, Fernandez and Guardiola 1993, Janke and Kleinert
1995, Weniger 1996b). Numerical calculations (Janke and Kleinert 1995, Weniger 1996b)
indicate that the series (3) converges forβ as small as 0.2.

The fact that the two expansions (2) and (3) are somehow connected has been known
for a long time. It is known (Artecaet al 1990) that by means of a suitable normalization
process the coefficients of the strong-coupling expansion can be computed provided that the
weak-coupling coefficients are known. Examples of such procedures are presented in the
papers by Janke and Kleinert (1995) and Weniger (1996b). In the latter paper,x6 andx8

anharmonicities have also been considered.
In this paper we obtain a representation forE(β) from which both strong-coupling and

weak-coupling expansions can be obtained as two limiting cases. Our consideration will
rely on the observation that the regions of applicability of the expansions (2) and (3) overlap,
i.e. one can chooseβ so thatE(β) can be computed both by means of the weak-coupling
asymptotic expansion (2) and the convergent strong-coupling expansion (3).

2. Theory

2.1. A representation forE(β)

The functionE(β) is known to be a regular analytic function ofβ in the complexβ-plane
with a cut drawn along the negative real axis (Simon 1970, Bender and Wu 1973).E(β)

has two singular points:β = 0 andβ = ∞. Consider the functionG(β) = E(β)

β
. From

the known analytic properties ofE(β) if follows that G(β) is an analytic function ofβ
in the complexβ-plane cut along the negative real axis, regular everywhere exceptβ = 0
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and β = ∞. From equation (3) one can see thatG(β) tend uniformly to zero when
Reβ → +∞. It is known (Markushevitch 1968) that these conditions are sufficient to
guarantee that for Reβ > 0 the functionG(β) can be represented as a Laplace transform
of a certain functionf (t) and, hence for Reβ > 0 one can write

E(β) = β
∫ ∞

0
f (t)e−βt dt . (5)

The analogous representation has been considered in different context by Delabaereet al
(1997).

The functionf (t) can be expressed through the coefficients of the strong-coupling
expansion (3) as follows. Inverting the Laplace transform on the right-hand side of the
equation (5) one obtains forf (t)

f (t) = 1

2π i

∫ c+i∞

c−i∞

E(β)

β
eβt dβ. (6)

The integral in equation (6) can be taken along any straight line Reβ = c > 0. The strong-
coupling expansion converges for sufficiently large|β|-values. Therefore, by choosing the
parameter ‘c’ to be a sufficiently large positive number, one can choose the contour of
integration in formula (6) so that the strong-coupling series converges everywhere on the
contour. Substituting expansion (3) forE(β) under the integral sign in equation (6) and
performing term-by-term integration with the help of the known formula (Abramovitz and
Stegun 1964)

1

0(z)
= 1

2π i

∫
C

x−zex dx (7)

where the contour of integrationC is a straight line Rex = constant> 0, one obtains for
the functionf (t)

f (t) =
∞∑
m=0

cm

0( 2m+2
3 )

t
2m−1

3 . (8)

The coefficientscm in equation (8) are the coefficients of the strong-coupling expansion
(3). It is easy to see that series (8) converges for allt . Indeed, the strong-coupling expansion
has a non-zero radius of convergence. In equation (8) by making a substitutiont

2
3 = u one

has, according to the Hadamard formula

lim sup
n→∞

|cn| 1n = 1

R
(9)

whereR is the radius of convergence of the series
∑
cnu

n. Applying the Hadamard formula
to the series

∑
cnu

n/0( 2m+2
3 ) and using asymptotic expression for the gamma function,

one can see that this series converges for allu.
The next question is how to obtain the asymptotic expansion (2) from the integral

representation (5). At this stage we have to make an assumption about the functionf (t)

from equation (8). A rather convincing numerical proof that this assumption is valid will
be given below. Let us suppose that the functionf (t) can be represented as

f (t) = E0+ g(t) (10)

whereE0 is the zero-order coefficient of the perturbation expansion (2) and the functiong(t)

decays sufficiently rapidly whent → ∞ so that all the integrals
∫∞

0 g(t)tm dt for m > 0
exist. If assumption (10) is valid then, expanding exponential function under the integral
sign in the equation (5) and integrating the series obtained term-by-term one obtains for
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Table 1. The functionf (t) and its asymptotic approximationsf (k)(t).

t f (t) f (2)(t) f (3)(t) f (4)(t)

1 0.578 569 30 0.652 309 09 0.406 180 22 0.114 012 06
5 0.509 306 58 0.520 235 15 0.505 611 42 0.497 848 17

10 0.502 190 31 0.504 459 01 0.502 180 37 0.501 325 02
15 0.500 735 65 0.501 397 03 0.500 814 13 0.500 635 47
20 0.500 293 71 0.500 525 15 0.500 335 39 0.500 285 02
25 0.500 130 55 0.500 221 78 0.500 150 10 0.500 133 09
30 0.500 062 55 0.500 101 74 0.500 071 72 0.500 065 22
32 0.500 047 40 0.500 075 87 0.500 054 20 0.500 049 65
34 0.500 036 24 0.500 057 10 0.500 041 27 0.500 038 05
36 0.500 027 97 0.500 043 32 0.500 031 66 0.500 029 35
38 0.500 021 85 0.500 033 12 0.500 024 44 0.500 022 77
39 0.500 019 45 0.500 029 04 0.500 021 52 0.500 020 10
40 0.500 017 42 0.500 025 50 0.500 018 99 0.500 017 76

E(β) the series analogous to (2), where the coefficientsEn with n > 0 are given by the
following formula

En = (−1)n−1

(n− 1)!

∫ ∞
0
g(t)tn−1 dt. (11)

It is easy to see that the above described procedure (expansion of the exponential function
under the integral sign and further term-by-term integration), yields an asymptotic series,
i.e. if EN(β) is the Nth partial sum of the series, then|E(β) − EN(β)| = O(|β|N+1)

when β → 0 remaining in the half-plane Reβ > 0. We shall not dwell upon the proof
of this fact since it is elementary (it involves only an estimation of the upper bound for
| ∫∞0 (e−βt−e−βtN )g(t) dt |, where the function e−βtN is a sum of the firstN terms of the Taylor
series of e−βt ).

In the second column of table 1 we represent the numerical values of the functionf (t)

computed for differentt-values with the help of series (8). The computations have been
performed with the help of ‘Mathematica’. For the coefficientscn we used the data from
Janke and Kleinert (1995) where the first 22 coefficients of the strong-coupling expansion
for the ground-state energy of the quartic anharmonic oscillator are given. Since the
normalization of the coupling constant used in this paper is different from that used by Janke
and Kleinert (1995) (these authors write the anharmonicity term in the Hamiltonian (1) as
gx4/4 instead of oursβx4/2, and calculate the coefficients of the strong-coupling expansion
in powers ofg−

2
3 ), the coefficientscn from equation (3) are actually the coefficientsαn of

the strong-coupling expansion given by Janke and Kleinert (1995) multiplied by a factor of
2

2n−1
3 . For the sake of completeness we present in the second column of table 2 the first 22

coefficients of series (3). To save space only a few digits of the coefficientscn are presented
in the table.

Due to the rapid convergence of the series, we were able to calculate the functionf (t)

up to rather large values oft . An inspection of the summation process when calculating
the sum in equation (8) shows that account of the first 22 terms of series (8) allows us to
reach an accuracy of about 1 part in 104 even for t as large as 40. For smaller values of
t the accuracy is much higher. Thus, we estimate, that fort ≈ 25 account of the first 22
terms of series (8) yields an accuracy of one part in 106, and fort ≈ 15 to one part in 109.

The data from the second column of table 1 show that our hypothesis (10) is very likely
to be true. Having established this fact we may proceed further and obtain some additional
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Table 2. Coefficientscn and sequence|cn|1/n

n cn |cn|1/n

0 0.530 181 0452
1 0.181 011 3244 0.181 011
2 −0.017 255 1314 0.131 359
3 0.002 597 6514 0.137 465
4 −0.000 415 4172 0.142 765
5 0.000 064 5560 0.145 207
6 −9.244 732× 10−6 0.144 871
7 1.131 832× 10−6 0.141 430
8 −9.438 601× 10−8 0.132 393
9 −3.261 936× 10−9 0.114 039

10 3.887 755× 10−9 0.144 202
11 −1.144 361× 10−9 0.153 866
12 2.449 702× 10−10 0.158 159
13 −4.204 230× 10−11 0.159 156
14 5.509 166× 10−12 0.156 961
15 −3.623 969× 10−13 0.148 120
16 −7.610 623× 10−14 0.151 387
17 3.931 341× 10−14 0.162 721
18 −1.068 970× 10−14 0.167 429
19 2.217 113× 10−15 0.169 327
20 −3.640 361× 10−16 0.169 066
21 4.200 939× 10−17 0.166 020
22 −6.481 760× 10−19 0.149 025

information about the functiong(t). To do that we shall study the asymptotic behaviour
of the perturbation coefficientsEn following from equation (11) and compare it with the
asymptotic formula (4) by Bender and Wu. One can see from equation (11) that when
n→∞ it is the region of the larget-values which contributes to the integral. We therefore
need a guess about the large-t asymptotic behaviour of the functiong(t). Let us suppose
that for larget-values the functiong(t) behaves as

g(t) ∼ Atα exp(−btγ ) (12)

whereA, α, b, γ are some constants to be determined. Substituting this expression into
equation (11) and performing the integration one obtains forn→+∞

En ∼ (−1)n−1

(n− 1)!

A

γ

0(α+n
γ
)

b
α+n
γ

. (13)

Using the known properties of gamma functions (Abramovitz and Stegun 1964) one can
easily show that this expression coincides with the leading term of the true asymptotic
behaviour of the coefficientsEn for the ground-state energy of the quartic anharmonic
oscillator, given by equation (4) if, and only if, the parameters in equation (12) are chosen

asα = 0, γ = 1
2, b =

√
8
3, A = √6/π . To reproduce the next-to-leading-order terms of

the asymptotic formula (4), one should suppose that whent → +∞ the corrections to the
large-t asymptotic behaviour (12) of the functiong(t) are of the form

g(t) ∼
√

6

π
exp(−

√
8t/3)

(
1− e1√

t
− e2

t
− e3

t
3
2

. . .

)
(14)

with the coefficientsei to be determined. Substituting expression (14) into equation (11),
integrating and comparing the result with the asymptotic formula (4) one can find the values



7000 I A Ivanov

of the coefficientsei on the right-hand side of equation (14). For the first two coefficients

ei one obtainse1 = a1

√
3
2, e2 = (6a2 − 3a1)/4, wherea1, a2 are the coefficients on the

right-hand side of the formula (4) by Bender and Wu. Thus, to reproduce the correct large-n

asymptotic behaviour of the coefficientsEn for the ground-state energy, the functionf (t)
given by equation (8) must have the following large-t asymptotic behaviour

∞∑
m=0

cm

0( 2m+2
3 )

t
2m−1

3 ∼ E0+
√

6

π
exp(−

√
8t/3)

1−
a1

√
3
2√
t
− 6a2− 3a1

4t
. . .

 (15)

whereE0 = 1
2, a1 = 95

72 and a2 = 20 099/10 368. We emphasize that this expression has
no fitting parameters. Once the functional form (12), (14) of the asymptotic behaviour of
the functiong(t) is adopted, all the parameters on the right-hand side of formula (15) are
determined uniquely. Formula (15) can easily be verified. In the third column of table 1 we
present numerical values given by the asymptotic formula (15) provided that only the two
leading terms of expansion (15) are taken into account (i.e. the terms of orderst−

1
2 andt−1

in the parentheses on the right-hand side of equation (15) are omitted, this approximation is
designated asf (2)(t) in table 1). The fourth column of table 1 contains the results obtained
if three leading terms of expansion (15) are taken into account (i.e. the term of ordert−

1
2

is kept in the parentheses on the right-hand side of equation (15), this approximation is
designated asf (3)(t) in the table), and the fifth column of table 1 contains the results
obtained with account of the four leading terms of equation (15) (the terms of orderst−

1
2 ,

t−1 are kept in the parentheses on the right-hand side of equation (15), designated asf (4)(t)

in table 1). We recall that the second column of this table contains the numerical values of
the functionf (t) calculated according to equation (8).

The comparison of the data strongly supports the conclusion that formula (15) describes
correctly the large-t asymptotic behaviour of the functionf (t) given by equation (8) and
that representation (5) with the functionf (t) given by equation (8) is valid. Both strong-
coupling and weak-coupling expansions can be obtained from equation (5) as two limiting
cases.

Let us discuss formula (15) in more detail. The left-hand side of it is series (8) with
the coefficients directly related to the coefficients of the strong-coupling expansion (3).
The right-hand side is known in analytical form. There may exist a way of obtaining an
analytical information about the asymptotic large-n behaviour of the coefficientscn from
this expression. We did not find a direct way to do it. Instead, we performed a numerical
study of series (8) which allowed us to obtain some information aboutcn indirectly. This
study is reported below.

2.2. Numerical study of the coefficientscn

We shall need a few facts from the theory of entire functions. First, we recall the
definitions of such concepts as order and type of an entire function of finite order and
type (Markushevitch 1968). For a given entire functionh(u) a functionM(r) is introduced
as

M(r) = max
|u|=r
|h(u)|. (16)

According to well known properties of analytic functionsM(r) is a monotonous growing
function of r. Omitting some unnecessary details, orderρ and typeσ of an entire function
h(u) can be defined as the smallest possible non-negative numbers for whichM(r) <
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exp(σ rρ) for all sufficiently larger. Roughly speaking, these numbers determine how
rapidly the maximum of the absolute value ofh(u) grows. One can show (Markushevitch
1968) that orderρ of an entire function represented by a series

∑
bnu

n, can be expressed
through the coefficientsbn of its power series expansion as

ρ = − lim sup
n→∞

n ln n

ln |bn| . (17)

Let us consider the series obtained from series (8) by making a substitutiont2/3 = u

h(u) =
∞∑
m=0

cm

0( 2m+2
3 )

um. (18)

As we saw when discussing the convergence properties of series (8),h(u) is an entire
function of u. It can be seen that the order of this function isρ = 3

2. Indeed, substituting
the coefficients of expansion (18) into equation (17), using the asymptotic expression for
the gamma function and taking into account that according to the Hadamard formula|cn|1/n
has a finite limit, one can see that for the function defined by series (18),ρ = 3

2. If we
knew the typeσ of this function the radius of convergence of series (18) could be found as
follows.

We shall need one more result from the theory of entire functions (Markushevitch 1968),
stating that ifbn are the coefficients of a power series expansion of an entire function having
finite-orderρ and typeσ , then the following equality holds

lim sup
n→∞

n1/ρ |bn|1/n = (eρσ)1/ρ. (19)

Applying this formula for the entire function (18), taking into account the Hadamard formula
(9) and using asymptotic expression for the gamma function (Abramovitz and Stegun 1964),
one obtains

lim sup
n→∞

|cn| 1n = 1

R
= σ 2

3 (20)

whereR is the radius of convergence of the series
∑
cnu

n andσ is the type of the entire
function (18).

To find the value ofσ for the functionh(u) given by series (18) we adopted the following
strategy. We computed the sum of series (18) at the points lying on the circles|u| = ri
in the u-complex plane with increasingri . We found that for 6< |u| < 12 the maximum
of the absolute value of|h(u)|, for u lying on a circle|u| = constant, is always achieved
whenu is on the negative real axis. In the second column of table 3 we present the values
of theM(ri) = max|u|=ri |h(u)| for ri = 6–12. In the third column of this table we present
the sequence of the ratiosσi = lnM(r)/r3/2 which according to the definition of a type of
an entire function, converges toσ .

We arrive at the following picture. Foru → +∞ along the positive real axis the
behaviour ofh(u) is known analytically and can be obtained from equation (15). On the
negative real axish(u) grows exponentially as exp(σu3/2) with σ ≈ 0.068.

In the fourth column of table 3 we present the numbers from the preceding column raised
to the power23. According to equation (20) the limit of this sequence is equal to 1/R, where
R is the radius of convergence of the series

∑
cnu

n. According to the Hadamard formula
the same quantity can be found as a limit of the sequence|cn|1/n. In the third column of
table 2 we present this sequence. These numbers are rather close to those from the fourth
column of table 3 but have somewhat greater dispersion. This is the reason why we used
the procedure based on the study of the functionh(u) for the estimation of the radius of
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Table 3. M(ri) = maxu=ri |h(u)| as a function ofri andσi .

ri M(ri ) σi σ
2/3
i

6 2.134 42 0.051 5886 0.138 5806
7 3.104 81 0.061 1737 0.155 2541
8 4.413 17 0.065 6104 0.162 6729
8 6.182 72 0.067 4725 0.165 7364

10 8.569 24 0.067 9314 0.166 4870
11 11.7572 0.067 5513 0.165 8654
12 15.9419 0.066 6106 0.164 3220

Table 4. The functionf (t) for the first excited state of the quartic oscillator.

t f (t)

1 1.697 459
2 1.586 290
3 1.547 105
4 1.527 804
5 1.516 225
6 1.508 012
7 1.501 209

convergence. We found that it gives better numerical results, which we would attribute to
the fact, that the numerical study of the function given by series (18) is less sensitive to
small numerical uncertainties in the numerical values of the large-order coefficientscn.

From the numbers in the third column of table 3 one can estimate the radius of
convergence of the series (18) asR ≈ 1

0.17 = 5.9. This is the radius of convergence
of the series in powers ofu = 1/β2/3. In theβ-complex plane we obtain thus an estimation
that the strong-coupling expansion (3) for the ground-state energy of the quartic anharmonic
oscillator converges if|β| > 0.07.

3. Remarks

For the ground-state energyE(β) of the quartic anharmonic oscillator we have given a
representation reproducing both limiting cases of the theory: the strong-coupling and the
weak-coupling regimes. It was shown, that the asymptotic behaviour of function (8) given
by a power series with the coefficients depending upon the strong-coupling coefficients (3)
can be obtained in a closed analytical form. An interesting question is: can one extract
analytical information about the coefficientscn from this relation?

The representation analogous to (5) can also be constructed for the excited states of
the quartic anharmonic oscillator. In table 4 we present some results for the first excited
state of the quartic anharmonic oscillator. We used the data for the first five coefficients
of the strong-coupling expansion for the first excited state, given in the work by Fernandez
(1992). In the second column of table 4 we represent the sum of the first five terms of
series (8). One can see, that for the larget-values the sum of the series tends to3

2 as could
be expected on the basis of formula (10).

One can give another derivation of the asymptotic formula (15) which reveals the well
known connection between the behaviour of perturbation theory at large orders and barrier-
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penetration rate (Le Guillou and Zinn-Justin 1990). Let us deform the contour of integration
in equation (6) so that it starts at−∞, goes along the negative real in the lower half-plane,
turns anticlockwise round the origin and goes to−∞ along the negative real axis in the
upper half-plane. If we are interested in the large-t asymptotic behaviour of the function
f (t) it is easy to see that it is a region near the origin which contributes mostly to the integral
(6). Consider separately the contributions to the integral (6) due to the real and imaginary
parts of energy. One can see that the contribution of the real part can be calculated just by
replacing ReE(β) by its value forβ = 0, i.e. by 1

2. A simple integration yields1
2. After

simple manipulations, formula (6) can be rewritten as

f (t) = 1

2
− 1

π

∫ 0

−∞

ImE(β)

β
eβt dβ (21)

where we used the fact thatE(β) assumes complex conjugate values on the upper and lower
sides of the cut. To estimate the latter integral in the limit of large positivet one should
know the behaviour of ImE(β) for small negativeβ-values. It is given by the well known
semiclassical formula

ImEsc(β) =
√
− 4

πβ
exp

{
2

3β

}
. (22)

Substituting the latter equation into formula (21) and calculating the integral with the help
of the saddle-point method, one recovers the asymptotic formula (15) for the functionf (t).
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Vinette F andČižek J 1991J. Math. Phys.32 3392
Weniger E J 1996aAnn. Phys., NY246 133
——1996bPhys. Rev. Lett.77 2859


